

Did Fires in Russia cause a UK Particulate Pollution Episode in May 2006?

Claire Witham

A. Manning, M. Harrison, H. Webster – Atmospheric Dispersion Group, Met Office

A. Cook & P. Willis - AEA AQ Forecasting Team

Introduction

- Moderate to High levels of air pollution were recorded in Scotland and England from 7-10 May 2006
- Air transport during this time was from the east
- Elevated levels of PM₁₀ also observed over NW Europe
- Near-critical fire situation in western Russia reported by Russian news agency on 5 May

Band	Index	24hr Mean μg/m ³
Low	1	0-21
	2	22-42
	3	43-64
Moderate	4	65-74
	5	75-86
	6	87-96
High	7	97-107
	8	108-118
	9	119-129
Very High	10	130+

UK PM₁₀ AQ levels

AURN Observations

- Unusually high levels of PM₁₀ recorded at 19 sites
- Max hourly concentrations of 101 μg/m³ in Aberdeen, >160 μg/m³ at Glasgow kerbside and >250 μg/m³ in Scunthorpe

Met Office

- Timing of episode later further SW
- Time of max 24-hour mean peak lags behind max hourly values
- Levels of other anthropogenically emitted species not elevated

Observations

Estimated additional contributions of PM₁₀ at Edinburgh St Leonards

© Crown copyright 2007

Satellite Images of Haze

© Crown copyright 2007

Satellite Images of Fire Region

Synoptic Weather Situation

Modelling the Episode

- Routine daily back-trajectories implied air source was to the east
- Further analyses conducted by Met Office using the NAME dispersion model:
 - Lagrangian particle model
 - Driven by 3D met data from Met
 Office NWP model (40 km res)
 - Predicts air concentrations and surface deposition
 - Run in forwards and backwards modes

NAME was run backwards from observation sites to identify potential source areas

Edinburgh 0000-0300 UTC

6 May

Forward Modelling of Smoke Transport

- •Uncertainty in the scale and type of fires required assumptions:
 - Location and size of burn area roughly estimated from satellite images
 - A constant unit release rate was used
 - Model was run forwards from 1 May 2006
 - Top of smoke plume estimated from other burn data
- Sensitivity tests were performed for release height and start time
- Wet and dry deposition accounted for

Forward Modelling Results

Comparison to Satellite Data

Meteosat 8 321 RGB image taken at 0530 UTC on 9 May 2006

NAME modelled boundary layer air concentration for 0600 UTC on 9 May 2006

Modelled Concentration (ug/m

May 2006

Other Possible Sources

Pollen?

- Reports of yellow dust
- Unusually large pollen releases in NW Europe
- Large particle size makes it less likely culprit
- Anthropogenic primary and secondary PM₁₀?
 - European pollution
 - Some contribution likely

Post-event Analysis of Filters

- Daily filters from Forfar from 1-14 May analysed
- X-ray fluorescence spectroscopy showed no consistent variation in particle composition for metals or sulphur
- Optical and scanning electron microscopy (SEM) showed only a few pollen particles over the whole period
- Most particles were inorganic or carbonaceous (particularly on the 7th)

© Crown copyright 2007

Met Office

Other Examples of Fire Pollution

- Biomass burning typically occurs in the spring and autumn in Eastern Europe and Russia
 Other identified related UK AQ incidents:
 - September 2002
 - March 2007

Obs and model prediction for Narberth March 2007

Met Office

NAME back-map for Narberth 25 March 2007 Page 16

- Evidence that fires in W. Russia/E. Europe have affected UK air quality at least 3 times since 2000
 - Sep 2002, ? 2003 (Muller et al., 2005), May 2006, Mar 2007
- Without changes in current burning practice such events are likely to occur again
 - Little UK can do about such long-range pollution
 - Pollution may reach HIGH levels with implications for health
- For EU reporting it is important that these "natural" pollution episodes are correctly identified

- PM₁₀ levels at 19 AURN sites exceeded current UK AQ objectives in May 2006
- Arrival times and locations of the elevated levels were controlled by the synoptic conditions
 - Under different met conditions more of the UK is at risk (as demonstrated in March 2007)
- Modelling and satellite evidence suggests that primary cause was Russian biomass burning
- NAME model was key for confirming the source of the pollution
- Similar cross-boundary pollution in the future has implications for UK air quality