The Open-Source Air Pollution Project Community tools for analysing air pollution data

David Carslaw

Institute for Transport Studies, University of Leeds

14 May 2008

Summary

- Background to the project
- Progress and examples
- Future directions and developments

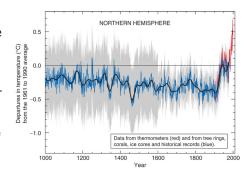
- Transparency should be at the heart of environmental regulation
 - Those affected by environmental decisions should be able to scrutinise the tools that lead to those decisions

- Transparency should be at the heart of environmental regulation
 - Those affected by environmental decisions should be able to scrutinise the tools that lead to those decisions
 - Many examples from the USA

- Transparency should be at the heart of environmental regulation
 - Those affected by environmental decisions should be able to scrutinise the tools that lead to those decisions
 - Many examples from the USA
- Open-source software

- Transparency should be at the heart of environmental regulation
 - Those affected by environmental decisions should be able to scrutinise the tools that lead to those decisions
 - Many examples from the USA
- Open-source software
 - All source code made available, free and can be modified by anyone

- Transparency should be at the heart of environmental regulation
 - Those affected by environmental decisions should be able to scrutinise the tools that lead to those decisions
 - Many examples from the USA
- Open-source software
 - All source code made available, free and can be modified by anyone
 - No longer in the realm of enthusiasts e.g. Linux, MySQL, R


- Transparency should be at the heart of environmental regulation
 - Those affected by environmental decisions should be able to scrutinise the tools that lead to those decisions
 - Many examples from the USA
- Open-source software
 - All source code made available, free and can be modified by anyone
 - No longer in the realm of enthusiasts e.g. Linux, MySQL, R
- Both promote participation and ownership

- Transparency should be at the heart of environmental regulation
 - Those affected by environmental decisions should be able to scrutinise the tools that lead to those decisions
 - Many examples from the USA
- Open-source software
 - All source code made available, free and can be modified by anyone
 - No longer in the realm of enthusiasts e.g. Linux, MySQL, R
- Both promote participation and ownership

Interesting aside – climate change and the "hockey stick"

- Controversy over IPCC "hockey stick" temperature graph^a
- Statistical methods shown to be flawed (McIntyre and McKitrick)
- Code and data made available some in R

^aMann, M.E. et al. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. *Nature*, Vol. 392, pp. 779787.

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it
 - Exploit the enormous (and growing) amount of air pollution data available

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it
 - Exploit the enormous (and growing) amount of air pollution data available
 - Progressively include advanced approaches generally not widely available

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it
 - Exploit the enormous (and growing) amount of air pollution data available
 - Progressively include advanced approaches generally not widely available
- Outputs

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it
 - Exploit the enormous (and growing) amount of air pollution data available
 - Progressively include advanced approaches generally not widely available
- Outputs
 - An R 'package' dedicated to air pollution analysis

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it
 - Exploit the enormous (and growing) amount of air pollution data available
 - Progressively include advanced approaches generally not widely available
- Outputs
 - An R 'package' dedicated to air pollution analysis
 - A web site to act as a central resource

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it
 - Exploit the enormous (and growing) amount of air pollution data available
 - Progressively include advanced approaches generally not widely available
- Outputs
 - An R 'package' dedicated to air pollution analysis
 - A web site to act as a central resource
 - Comprehensive documentation

- To build a set of free, open-source tools for the analysis of air pollution data
 - Use highly developed open-source statistical software 'R'
 - To make it easier to analyse data and to gain insights from it
 - Exploit the enormous (and growing) amount of air pollution data available
 - Progressively include advanced approaches generally not widely available
- Outputs
 - An R 'package' dedicated to air pollution analysis
 - A web site to act as a central resource
 - Comprehensive documentation

- Sefton Council
 - Support as part of their 'Beacon' status

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources
 - Many non-road traffic sources

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources
 - Many non-road traffic sources
- Defra/AEA

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources
 - Many non-road traffic sources
- Defra/AEA
 - Developments to enhance informatics value of AURN data

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources
 - Many non-road traffic sources
- Defra/AEA
 - Developments to enhance informatics value of AURN data
- NERC Knowledge Transfer bid

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources
 - Many non-road traffic sources
- Defra/AEA
 - Developments to enhance informatics value of AURN data
- NERC Knowledge Transfer bid
 - Would provide significant funding

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources
 - Many non-road traffic sources
- Defra/AEA
 - Developments to enhance informatics value of AURN data
- NERC Knowledge Transfer bid
 - Would provide significant funding
 - Widely supported

- Sefton Council
 - Support as part of their 'Beacon' status
 - Help inform continuing air quality management activities
- North Lincolnshire/AEA
 - Scunthorpe steel works
 - Highly complex mixture of sources
 - Many non-road traffic sources
- Defra/AEA
 - Developments to enhance informatics value of AURN data
- NERC Knowledge Transfer bid
 - Would provide significant funding
 - Widely supported

- The project aims to overcome barriers to analysis
 - Lack of time, money, specialist software, know-how or all four!

- The project aims to overcome barriers to analysis
 - Lack of time, money, specialist software, know-how or all four!
- Not required to learn R

- The project aims to overcome barriers to analysis
 - Lack of time, money, specialist software, know-how or all four!
- Not required to learn R
 - Learning R can be hard work

- The project aims to overcome barriers to analysis
 - Lack of time, money, specialist software, know-how or all four!
- Not required to learn R
 - Learning R can be hard work
 - Make things as simple as possible for the user

- The project aims to overcome barriers to analysis
 - Lack of time, money, specialist software, know-how or all four!
- Not required to learn R
 - Learning R can be hard work
 - Make things as simple as possible for the user

```
Example of code required to make a polar plot
```

```
polar.plot(mydata, pollutant = "so2")
```

Some examples of current capabilities to follow . . .

What effort is required to use these tools?

- The project aims to overcome barriers to analysis
 - Lack of time, money, specialist software, know-how or all four!
- Not required to learn R
 - Learning R can be hard work
 - Make things as simple as possible for the user

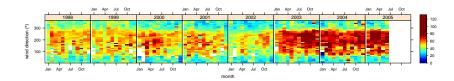

Example of code required to make a polar plot

```
polar.plot(mydata, pollutant = "so2")
```

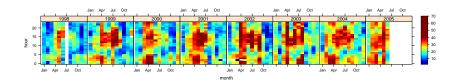
Some examples of current capabilities to follow ...

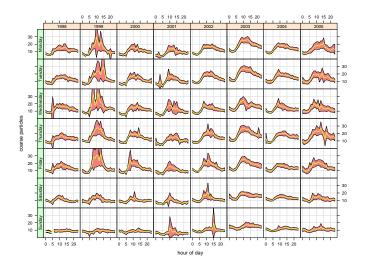
Diurnal variation in concentrations

- Diurnal and day of week variations can provide clues as to the source
- Function diurnal.error produces three plots
- Uncertainty bands can help determine whether one source is different from another



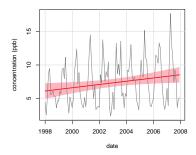
Bivariate polar plots


- Useful for source detection
- Methods have been extended to 'model' surface concentrations
- Can usefully be combined with other methods


Concentrations by wind direction, year and month

Maximum hourly ozone concentrations by hour of day, year and month

Diurnal and day of week variation – PM coarse

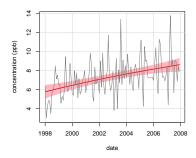


Flexible treatment of trends – ozone at Marylebone Road

Trend with smooth fit and
 95 % confidence intervals

Flexible treatment of trends - ozone at Marylebone Road

- Trend with smooth fit and
 95 % confidence intervals
- Trend with smooth fit and 95 % confidence intervals
 - deseasonalise first



Flexible treatment of trends – ozone at Marylebone Road

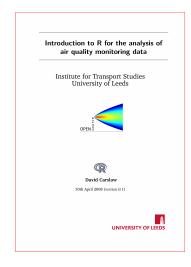
- Trend with smooth fit and
 95 % confidence intervals
- Trend with smooth fit and
 95 % confidence intervals
 - deseasonalise first

Flexible treatment of trends - ozone at Marylebone Road

- Trend with smooth fit and
 95 % confidence intervals
- Trend with smooth fit and 95 % confidence intervals
 - deseasonalise first
- Consider "no trend" hypothesis through bootstrap resampling

Flexible treatment of trends – ozone at Marylebone Road

- Trend with smooth fit and
 95 % confidence intervals
- Trend with smooth fit and 95 % confidence intervals
 - deseasonalise first
- Consider "no trend" hypothesis through bootstrap resampling


Flexible treatment of trends - ozone at Marylebone Road

- Trend with smooth fit and
 95 % confidence intervals
- Trend with smooth fit and 95 % confidence intervals
 - deseasonalise first
- Consider "no trend" hypothesis through bootstrap resampling

Documentation

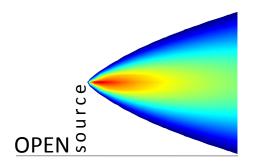
- Documentation has been started
 - Part 1: Introduction to using R to analyse monitoring data
 - Part II: Dedicated functions to analyse monitoring data
- Longer term aims
 - Develop a Framework for analysing data
 - Case studies spanning a range of contemporary problems

- The big picture
 - Change the way we do things

- The big picture
 - Change the way we do things
 - Environmental models?

- The big picture
 - Change the way we do things
 - Environmental models?
 - Work that is truly reproducible

- The big picture
 - Change the way we do things
 - Environmental models?
 - Work that is truly reproducible
- Wider issues


- The big picture
 - Change the way we do things
 - Environmental models?
 - Work that is truly reproducible
- Wider issues
 - Developing countries

- The big picture
 - Change the way we do things
 - Environmental models?
 - Work that is truly reproducible
- Wider issues
 - Developing countries
 - Actively seek participation of researchers elsewhere in the world

- The big picture
 - Change the way we do things
 - Environmental models?
 - Work that is truly reproducible
- Wider issues
 - Developing countries
 - Actively seek participation of researchers elsewhere in the world

- The big picture
 - Change the way we do things
 - Environmental models?
 - Work that is truly reproducible
- Wider issues
 - Developing countries
 - Actively seek participation of researchers elsewhere in the world

Thank you for your attention!

