The open-source air pollution project openair

David Carslaw

The UK Air Quality Forecasting Seminar 16th July 2009

David Carslaw — [The open-source air pollution project](#page-26-0) 1/25

Outline

1 [Introduction](#page-2-0)

- 2 [Examples of openair functions](#page-7-0)
- **3** [Outlook and concluding remarks](#page-22-0)

Outline

1 [Introduction](#page-2-0)

-
-

Opportunities and barriers Analysis of measurement and model output data

Opportunities

- \blacksquare The analysis of air quality data can provide important insights into air pollution
- \blacksquare There is a huge amount of data available
- Insightful analysis provides the evidence to support air quality management decisions

Barriers

- No consistent set of tools available to carry out analysis
- Tools can be spread across many different software applications
- **Many useful approaches are simply unavailable**
- Lack of time, money or ideas about what can be done

The openair project Summary of project

Key points

- 3-year NERC project to October 2011
- **Develop and make available open-source data analysis** tools to AQ community
- \blacksquare Use **R** statistical software as the platform
	- \blacksquare Highly capable software for "programming with data"
	- Develop a "package" of tools and progressively include advanced methods not widely available
	- \blacksquare Transparency all code open to scrutiny

openair website Central resource for the project

- **Available at** www.openair-project.org
- **popenair** package $$ development version
- **All documentation**, data sets etc.
- **Mailing list and newsletter**
- Sister NERC project AirTrack at the University of Lancaster with complimentary aims
- Joint **openair**/AirTrack workshop, London, 1st October 2009

Data analysis How best to analyse data?

 \blacksquare Data analysis is most useful when built around specific questions, however. . .

Exploratory data analysis can be very insightful and is under-used — but time consuming

John Tukey sums it up:

"The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data."

Outline

- 2 [Examples of openair functions](#page-7-0)
-

Example analysis at a background site Thurrock — east of the M25

- Import a few years of data for a range of pollutants
- Examples of how some of the openair functions can be applied

Example

 $tk1 = import("d://mydata/thurrock.csv")$

Quickly summarise data The summarise function

- **Always a good idea to look at** data first before doing anything more serious
- **The summarise function** provides a way to do this rapidly

Example

summarise(tk1)

What do the met conditions look like? The wind.rose function

- **Plot a traditional wind rose** using the wind.rose function
- lots of options to control how the data are plotted

Example

wind.rose(tk1)

Wind roses by year Plot by year, month, hour of the day...

$$
Example
$$
\n
$$
wind\text{.rose(tk1, type = "year")}
$$

How do concentrations vary in time? The time.variation function

- \blacksquare The temporal variation in concentrations can provide important clues as to the source
- Sources can vary differently by hour of the day, day of the week and season
- **Enhanced with further information**
	- **Traffic data**
	- **Meteorological data e.g. boundary layer height,** atmospheric stability
	- Excellent for model evaluation

Example

time.variation(tk1, pollutant $=$ "nox")

How do concentrations vary in time? The time.variation function

How do concentrations vary in time? Two or more pollutants at once $(SO₂$ and $NO_X)$

Normalising the concentrations helps greatly when comparing different pollutants

David Carslaw — [The open-source air pollution project](#page-0-0) 15/25

How do concentrations vary in time? Two or more pollutants at once $(SO_2, NO_X \text{ and } O_3)$

Very different behaviours and underlying reasons for differences

Polar plots and source identification Concentrations by wind speed and direction

Variation with wind speed and direction can help identify sources and source characteristics¹

- Tall stack emissions vs. ground-level sources
- **Wind-blown sources e.g. particle** re-suspension
- Hot buoyant plumes e.g. aircraft jets
- **Local street canyon mixing**

Example

polar.plot(tk1, pollutant $=$ "nox")

 1 Carslaw et al. (2006). Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Env., 40 (28), 5424-5434.

Polar plots and source identification Concentrations by wind speed and direction

- \blacksquare The plot for $SO₂$ is markedly different to NO_x
- **Exidence of at least three sources**
	- Can be shown to be a refinery, power station and industrial sources

Example

polar.plot(tk1, pollutant $=$ "so2")

Temporal polar plots Concentrations by wind direction and time

Plot as an annulus

- Consider how concentrations vary by hour of the day, day of the week, season or trend by wind direction
- For NO_x highest concentrations at night from north-west

Example

polar.annulus(tk1, pollutant $=$ "nox")

Temporal polar plots Concentrations by wind direction and time

- \blacksquare The SO₂ plot is markedly different to NO_{X}
- Concentrations highest during daytime and from south-east

Example

polar.annulus(tk1, pollutant $=$ "so2")

Gan choose type $=$ "weekday", "season" and "trend"

Trends Trend analysis in openair

- \blacksquare Trends are an important component of air quality analysis
- **Mann-Kendall** analysis often used for environmental time series
- Consider monthly trends with option to de-seasonalise the data
- **Use bootstrap simulation** techniques to estimate uncertainties and block bootstrap to deal with autocorrelation

Example

 $MannKendall(tk1, pollutant = "so2")$

Trends Can consider trends in many different ways

Trends can be 'conditioned' by many different variables-here by wind direction

David Carslaw - The open-source air pollution project

Outline

-
- **3** [Outlook and concluding remarks](#page-22-0)

Developments

- Reviewing scientific literature and will adopt promising approaches
	- Examples include, improved temporal characterisation e.g. Fourier analysis, change-point detection
	- \blacksquare Better quantitative analysis
- -
	-
- **3** The **openair** package
	-
	-
	-
	-

Developments

- Reviewing scientific literature and will adopt promising approaches
	- Examples include, improved temporal characterisation e.g. Fourier analysis, change-point detection
	- \blacksquare Better quantitative analysis
- 2 Better support for model evaluation
	- Automate the process of evaluating models
	- Develop a range of metrics
- **3** The **openair** package
	-
	-
	-
	-

Developments

- Reviewing scientific literature and will adopt promising approaches
	- Examples include, improved temporal characterisation e.g. Fourier analysis, change-point detection
	- \blacksquare Better quantitative analysis
- 2 Better support for model evaluation
	- Automate the process of evaluating models
	- Develop a range of metrics
- **3** The **openair** package
	- Graphical-user interface (GUI)?
	- Remote repository with full version control and easier installation
	- **Develop documentation**
	- Reproducible analyses using Sweave, R and \angle ATEX

Thank you for you attention!

Questions?

David Carslaw d.c.carslaw@its.leeds.ac.uk

David Carslaw — [The open-source air pollution project](#page-0-0) 25/25 and 25/25 and 25/25 and 25/25